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Abstract

Composite laminates are widely used in construction of mechanical, aerospace, marine and automotive
structure. These structures exhibit inherent random dispersion in material properties, as absolute control of
production process is neither feasible nor economical. Some composite structures are subjected to large
amplitude vibration during their working life that may lead to non-linearity in the response. The present
paper analyses the effect of material parameter dispersion on the large amplitude free vibration of especially
orthotropic laminated composite plates. The basic formulation of the problem has been developed based on
the classical laminate theory and Von-Karman non-linear strain–displacement relation. The system
equations have been obtained by using Hamilton’s principle and the solution has been found by term wise
series integration. Perturbation technique has been used to obtain the second order response statistics.
Typical results have been presented for a plate with all edges simply supported. Effects of side-to-thickness
ratio, aspect ratio, oscillation amplitude and mode shape along with change in standard deviation of
material properties have been investigated for cross-ply symmetric and antisymmetric laminates.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Composite are being increasingly adopted in diverse engineering applications. Laminated
composite plates are fast replacing metal alloys in most light transport vehicles. Many aerospace
and other high-speed vehicle components are being fabricated with composites. The properties of
composite display considerable scatter because of the uncertainties involved at many levels in
fabrication and manufacturing—properties of its constituents, geometrical parameters of
laminates, fiber orientations, volume fraction, inclusions, voids and others. It is not practically
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possible to control these variations completely, resulting in inherent variations in the material and
geometric properties of the laminates. The uncertainties in the system parameters are reflected in
uncertainty in its response behavior. It is important for the designer to have an accurate
knowledge of the structural response for sensitive applications. Enhanced accuracy in response
evaluation is possible by accounting for the dispersion in material properties in the modelling of
the problem. This can be achieved by taking the material properties as random.
Structural components are generally subjected to dynamic loading in their working life. Very

often these may have to perform in severe dynamic environment. Accurate evaluation of the
system response demands the investigation of their non-linear free vibration behavior.
Any structural analysis problem is characterized by the following three basic aspects: material

of the structure, geometry of the structure and type of loading. In a real life problem, all the three
aspects are random in nature. Significant volume of literature is available for external loading as
random with material properties and geometry as deterministic. Nigam and Narayanan [1] have
presented various classes of problems in this area.
Some published literature is available for analysis of structure with random material properties.

Ibrahim [2] has reviewed topics pertaining to structural dynamics with parameter uncertainties.
Leissa and Martin [3] have analyzed the vibration and buckling of rectangular composite plates
and have studied the effects of variation in fiber spacing. Shinizuka and Astill [4] have employed a
numerical technique to obtain statistical properties of eigenvalues of spring supported columns
with the support and axial loading along with material and geometric properties as random. The
method has been used to investigate the accuracy of the perturbation approach for calculation of
vibration and buckling modes. Salim et al. [5–7] have studied the statistical response of
rectangular composite plates considering material properties as independent random variables
(RV). The second order statistics for static deflection, natural frequency and buckling load have
been studied using a first order perturbation technique (FOPT). Free vibration response has been
obtained by Vaicatis [8] for beams with mass and flexural rigidity as RV. Chen and Soroka [9]
have studied the response of a multi-degree-of-freedom system with random properties to
deterministic excitations. The system equations have been solved by perturbation technique. The
second order statistics of the system response have been investigated with variation in the system
property statistics. Yadav and Verma [10] have studied the buckling response of thin cylindrical
shell using classical laminate theory (CLT) and have employed the FOPT for obtaining the second
order statistics of buckling loads. Gorman [11] has presented free vibration analysis of thin
rectangular plates with variable edge supports using the method of superimposition. Singh et al.
[12,13] have studied the initial buckling and natural frequency of cylindrical panel and composite
plate with random material properties and have obtained the second order statistics of response.
All the studies of composite structures in random environment are confined to small

displacements in the linear domain. To the best of the authors’ knowledge, large amplitude
dynamic response of composite plates with random material properties has received no attention.
The design margin is small in sensitive applications. Lack of adequate knowledge of the system
behavior may result in failure of the design. The objective of the present work is to incorporate
the non-linear effects for free vibration analysis in the random environment as an important
design information. The analysis uses CLT and Von-Karman non-linear strain–displacement
relationship. Hamilton’s principle has been used for developing the system equations. The
second order statistics of non-linear natural frequency for composite plate with random material
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properties has been evaluated using FOPT. All edges are assumed simply supported (SS). The
numerical results for mean and standard deviation (SD) for the non-linear natural frequency with
variation in second order statistics of the material properties along with the effects of thickness
and aspect ratios have been obtained for symmetric and antisymmetric cross-ply laminates.

2. Non-linear natural frequency

2.1. System energies

Consider a rectangular composite plate of constant total thickness ‘h’, composed of thin
orthotropic layers bonded together. The origin of a Cartesian co-ordinate system is located in the
central plane at the left corner with x and y axes in the plane and z-axis normal to it. The
displacements of a point in the mid-plane along the x; y and z directions are denoted by u; v and w;
respectively.
The stress and moment resultants per unit length are defined as [14]:

Ni

Mi

" #
¼

Aij Bij

Bij Dij

" #
ej

kj

" #
ði; j ¼ 1; 2 and 6Þ; ð1Þ

where Aij; Bij and Dij are the extensional, bending-extension coupling and bending stiffness
matrices, respectively. ej and kj are the mid-plane strains and curvature, respectively.
The strain energy for the plate can be written as

U ¼
1

2

Z h=2

�h=2

Z
A

ðs1e1 þ s2e2 þ s3e3 þ s4e4 þ s5e5 þ s6e6Þ dA dz: ð2Þ

The stress and moment resultants can also be defined as [14]:

ðNi;MiÞ ¼
Z h=2

�h=2
sið1; zÞ dz ði ¼ 1; 2 and 6Þ: ð3Þ

Neglecting the transverse shear effects under the CLT formulation, e3; e4; e5 ¼ 0: Substituting
Eqs. (1) and (3) in Eq. (2), the expression for the strain energy can be written as:

U ¼
1

2

Z a

0

Z b

0

fA11e21 þ 2A12e1e2 þ A22e22 þ 2A16e1e6

þ 2A26e2e6 þ A66e26 þ 2B11k1e1 þ 2B12ðk2e1 þ k1e2Þ

þ 2B22k2e2 þ 2B16ðk6e1 þ k1e6Þ þ 2B26ðk6e2 þ k2e6Þ

þ 2B66e6k6 þ D11e21 þ 2D12k1k2 þ D22e22 þ 2D26k6k2

þ 2D16k6k1 þ D66k26g dx dy: ð4Þ

The kinetic energy of the plate, neglecting in-plane inertia, is:

T ¼ 1
2

� � Z a

0

Z b

0

X
rihi

� �
’w2ðx; y; tÞ dx dy ð5Þ
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2.2. Non-linear strain–displacement relations

Assuming the dynamic amplitudes to be large, the following Von-Karman strain–displacement
relations are used [15]:

e1 ¼
@u

@x
þ
1

2

@w

@x

	 
2
; e2 ¼

@v

@y
þ
1

2

@w

@y

	 
2
;

e6 ¼
@u

@y
þ

@v

@x
þ

@w

@x

@w

@y
: ð6Þ

The curvature–displacement relationship can be written as:

k1 ¼ �@2w=@x2; k2 ¼ �@2w=@y2;

k6 ¼ �2@2w=@x@y: ð7Þ

2.3. Boundary condition

The boundary condition for a plate with all sides simply supported with edges free to move in
their respective normal direction are given by the following set of equations:

Along x ¼ 0 and x ¼ a for all y : w ¼ 0; Mx ¼ 0; v ¼ 0; Nx ¼ 0:

Along y ¼ 0 and y ¼ b for all x : w ¼ 0; My ¼ 0; u ¼ 0; Ny ¼ 0: ð8Þ

The following set of admissible functions satisfies the boundary conditions:

u ¼ u0ðtÞcos
mpx

a
sin

npy

b
; v ¼ v0ðtÞsin

mpx

a
cos

npy

b
;

w ¼ w0ðtÞsin
mpx

a
sin

npy

b
: ð9Þ

2.4. System equations

Substituting Eqs. (6), (7) and (9) in Eqs. (4) and (5) and carrying out the indicated integration gives
the total strain energy and kinetic energy of the system. Use of Hamilton’s principle leads to two
algebraic and one ordinary differential equations in terms of the displacement amplitudes u0; v0 and w0:

T1u0 þ T2v0 þ T3w0 þ T4w
2
0 ¼ 0; ð10Þ

T2u0 þ T5v0 þ T6w0 þ T7w
2
0 ¼ 0; ð11ÞX

rihi

� �
.w0 þ T3u0 þ T6v0 þ T8w0 þ 2T4u0w0 þ 2T7v0w0 þ T9w

2
0 þ T10w

3
0 ¼ 0; ð12Þ

where the coefficients T1;T2;y;T10 depend on the plate geometry, material properties and the
mode shapes. Their expressions are placed in Appendix A.
Substituting u0 and v0 in terms of w0 from Eqs. (10) and (11) into Eq. (12) results in a second

order differential equation containing quadratic and cubic non-linear terms:X
rihi

� �
.w0 þ L1w0 þ L2w

2
0 þ L3w

3
0 ¼ 0; ð13Þ
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where L1; L2 and L3 are as follows:

L1 ¼ ½T8 þ fð2T2T3T6 � T2
3T5 � T2

6T1Þ=ðT1T5 � T2
2 Þg	;

L2 ¼ ½T9 þ fð3T2T3T7 � 3T2T4T6 � 3T3T4T5 � 3T1T6T7Þ=ðT1T5 � T2
2 Þg	;

L3 ¼ ½T10 þ fð4T2T4T7 � 2T5T
2
4 � T1T

2
7 Þ=ðT1T5 � T2

2 Þg	: ð14Þ

The energy balance equation is obtained by multiplying Eq. (13) by ’w0 and integrating with
respect to time: X

rihi

� �
’w20 þ L1w

2
0 þ

2
3

� �
L2w

3
0 þ

1
2

� �
L3w

4
0 ¼ H ðconstÞ; ð15Þ

where ri is the density and hi is the thickness of the ith lamina.
At w0 ¼ wmax the velocity ’w0 is zero. Using this condition the constant H in Eq. (15) can be

obtained as:

H ¼ L1w
2
max þ ð2

3
ÞL2w3max þ ð1

2
ÞL3w4max: ð16Þ

Substituting this constant H in Eq. (15) yields:X
rihi

� �
’w20 ¼ L1ðw2max � w20Þ þ

2
3

� �
L2ðw3max � w30Þ þ

1
2

� �
L3ðw4max � w40Þ ð17Þ

The displacement amplitude is obtained from Eq. (17) by setting ’w0 ¼ 0; which signifies the
point of motion reversal. For all symmetric laminates and square antisymmetric laminate the
coefficient L2 assumes zero value. For these cases the displacement amplitude has two real and
opposite roots 7wmax: Hence the non-linear time period for such a plate can be obtained as:

Tnl ¼
2p
o

¼ 4

Z p=2

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðrihiÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½L1 þ 1

2
L3ð1þ sin

2 yÞw2max	
q : ð18Þ

On simplifying, one can rewrite the above equation as:

Tnl ¼
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðrihiÞ
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1ð1þ bÞ

p Z p=2

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a sin2 y

p ; ð19Þ

where b ¼ 0:5L3w
2
max=L1 and a ¼ b=ð1þ bÞ:

Eq. (19) is in the form of an elliptic integral, which cannot be evaluated in terms of elementary
functions. An infinite series representation can be generated for the above integral by first
expanding the integrands in binomial series and then using term wise integration:

Tnl ¼
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðritiÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1ð1þ bÞ

p 1�
a
22

þ
a2

42
�

a3

82
þ

a4

162
� y

� �
: ð20Þ

The non-linear frequency can be expressed as:

o ¼ 2p=Tnl : ð21Þ

Thus o is a function of E11, E22, G12, n12 and wmax:
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2.5. Mean and variance of natural frequency—perturbation technique

Perturbation approach has been adopted for obtaining the second order frequency statistics
with randomness in material properties of the flat plate. It is assumed that the material properties
are independent RV. It is also assumed that the dispersion of each material property about its
mean value is small, which is true in most engineering applications.
Any random variable may be split up as the sum of its mean and zero mean random part with

generality. For example

bl ¼ bd
l þ br

l ; ð22Þ

where superscript ‘d’ denotes the mean value, which is deterministic and ‘r’ denotes the
superimposed zero mean random component. Let bl be the primary RV for the system selected as
the basic material properties for the present study.
Using Taylor series expansion the random part of the dependent variables can be expressed in

terms of the independent variables. Assuming br
l to be small in magnitude, the second and higher

order terms are neglected and the expression may be put as:

Lr
i ¼

Pp
l¼1ð@Ld

i =@bd
l Þb

r
l ;

or ¼
Pp

l¼1ð@o
d=@bd

l Þb
r
l ;

ð23Þ

where Lr
i and or are the zero mean random parts of the operator Li and the system natural

frequency o. Since dispersion about the mean is small, total random processes involved in the
derivatives have been approximated by their mean values.
The elements of the extensional stiffness matrix Aij ; coupling matrix Bij and bending stiffness

matrix Dij are given by [14]

Ad
ij ¼

Xn

k¼1

ð %QijÞ
d
kðhk � hk�1Þ; Bd

ij ¼
1
2

� �Xn

k¼1

ð %QijÞ
d
kðh

2
k � h2k�1Þ

Dd
ij ¼

1
3

� �Xn

k¼1

ð %QijÞ
d
kðh

3
k � h3k�1Þ i; j ¼ 1; 2 and 6; ð24Þ

where ð %QijÞk is the transformed reduced stiffness of the kth lamina. In general, in-plane as well as
out-of-plane loads may act on the plate.
Using Taylor series expansion, keeping only one term in the series and neglecting small

quantities, following Eq. (23) one can write:

Ar
ij ¼

Xp

l¼1

ð@Ad
ij=@bd

l Þb
r
l ; Br

ij ¼
Xp

l¼1

ð@Bd
ij=@bd

l Þb
r
l ; and

Dr
ij ¼

Xp

l¼1

ð@Dd
ij=@bd

l Þb
r
l : ð25Þ

ARTICLE IN PRESS

A.K. Onkar, D. Yadav / Journal of Sound and Vibration 272 (2004) 627–641632



Using Eq. (19), the derivative of od with respect of bd
l can be expressed as:

@od=@bd
l ¼

2
@Ld

1

@bd
l

wmax þ
@Ld

3

@bd
l

w3max

 !

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ld

1wmax þ Ld
1w3max

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ld

1wmax þ Ld
3w3max

q @

@bd
l

1 �
a
22

þ
a2

42
� y

� �

ffiffiffiffiffiffiffiffiffiffiffiffi
2wmax

p ffiffiffiffiffiffiffiffiffiffiffiffiffiP
riti

p
1 �

a
22

þ
a2

42
� y

	 
2 : ð26Þ

The partial derivative of Ld
1 ; Ld

3 and a with respect to bd
l can be represented in terms of E11; E22;

v12 and G12:
The natural frequency can now be written as follows:

o ¼ od þ
Xp

l¼1

ð@od=@bd
l Þb

r
l : ð27Þ

The variance of the natural frequency takes the form:

VarðoÞ ¼ E
Xp

l¼1

ð@od=@bd
l Þb

r
l

( )22
4

3
5: ð28Þ

The SD is obtained as the square root of the variance.

3. Results and discussion

The closed form expressions developed in the previous section have been used to obtain the
frequency mean and the variance for plates with random material properties. Results have been
obtained for symmetric and antisymmetric cross-ply laminates. All lamina are assumed to have
the same thickness and the material properties are orthotropic along the material axes. The
laminates are subjected to large amplitude vibrations. The effects of material property dispersion
along with variations in aspect ratio, thickness ratio and oscillation amplitude on the frequency
statistics have been studied. The approach has been validated with some results available in
literature.

3.1. Validation

The validation of the present formulation is sought by comparison of results with reported
literature. However, non-linear formulation is not available in literature for laminated composite
plate with random material properties. Hence, comparison has been made only with the
linear formulation as a special case of the present non-linear analysis. Frequency variance
for linear strain–displacement relations obtained by taking L3 ¼ 0 in Eq. (26), with all basic
material properties varying simultaneously, are compared with the result by Singh et al. [13].
Table 1 represents the comparison of SD of frequency for four layered [0
/90
/90
/0
]
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square symmetric cross-ply with thickness ratio b=h ¼ 10: The mean values of the material
properties used are [13]:

E22 ¼ 10:3 GPa; E11 ¼ 25E22; G12 ¼ 0:5E22; and

n12 ¼ 0:25;

where E11 and E22 denote the longitudinal and transverse elastic modulii, respectively, G12

is the in-plane shear modulus and n12 denotes the Poisson ratio. The plate edges are simply
supported and the SD of frequency is non-dimensionalized with the mean frequency.
A reasonable good agreement between the two is observed. The results from the present study
with non-linear formulation are also placed in the table for comparison. The effect of non-
linearity is apparent with different values of the amplitude w0 ¼ wmax=b: The mean frequency
increases with increase in the amplitude. This indicates a stiffening behavior of the plate with
displacement.
Table 2 presents a comparison of the non-dimensionalized mean frequency with limited

available results by Singh et al. [16] for [0
/90
/90
/0
] laminate with a=b ¼ 2: The material
properties used for the analysis are [16]: E11 ¼ 40E22; G12 ¼ 0:5E22; and n12 ¼ 0:25: The reference
uses direct integration method for the analysis of mean frequency whereas the present approach
gives an exact solution. A reasonably good agreement between the two is observed. The
approximate method returns slightly higher values having a maximum error of 3.4% that keeps
reducing with increase in the oscillation amplitude.
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Table 1

Comparison of frequency

SD/mean of material properties 0.05 0.10 0.15 0.20

SDðo2Þ=meanðo2Þ
Singh [13] linear 0.045 0.091 0.138 0.180

Present study (linear) 0.044 0.088 0.133 0.177

Present study (non-linear)

ðw0 ¼ 0:3Þ 0.048 0.097 0.146 0.194

ðw0 ¼ 0:6Þ 0.054 0.107 0.160 0.213

ðw0 ¼ 0:9Þ 0.058 0.115 0.172 0.229

Table 2

Mean non-linear frequency, onl=o1

Amplitude

w0 ¼ 0:3 w0 ¼ 0:6 w0 ¼ 0:9

Present work 1.18 1.61 2.16

Ref. [16] 1.22 1.63 2.18

Stacking sequence: [0
/90
/90
/0
], SSSS plate, b=h ¼ 100; a=b ¼ 2:
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3.2. Second order frequency statistics

The material used for the graphite/epoxy composite plate is the same as employed for
generating Table 2. All the four material properties are considered as random for the analysis.

3.2.1. Mean frequency

Table 3 presents the non-dimensionalized mean non-linear frequency for different plate
thickness and amplitude with simply supported edges. Influence of the scattering in the material
properties on the mean frequency has been obtained by allowing the coefficient of variation to
change from 0% to 20% for laminated cross-ply plates. The plates have aspect ratios b=a ¼ 1 and
2 and thickness ratios b=h ¼ 100; 50 and 33.33 with stacking sequences of [0
/90
/90
/0
] and
[0
/90
/0
/90
]. The mean non-dimensional frequency decreases with increase in the plate
thickness and increases with the oscillation amplitude. The antisymmetric laminate has higher
mean stiffness compared to the symmetric laminate having higher frequencies.

3.2.2. Variance of frequency

The variation of non-dimensionalized frequency with dispersion in all the basic material
properties changing simultaneously are presented in Figs. 1(a) and (b). Results with the linear
formulation are also plotted for comparison with the non-linear formulation. Square symmetric
and square antisymmetric four layered cross-ply with b=h ¼ 100 have been examined. As
amplitude increases the frequency sensitivity increases for the symmetric lay-up while it decreases
for the antisymmetric case. The sensitivity of the square antisymmetric cross-ply is greater than
the symmetric lay-up. Coefficients of variation for the symmetric lay-up are close for different
amplitude as well as the linear formulation. This does not hold for the antisymmetric case with the
linear formulation overpredicting the value.
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Table 3

Mean non-linear frequency onl=o1

Thickness ratio (b/h)

100 50 33.33

(a) Stacking sequence:[0
/90
/90
/0
]

a=b ¼ 1 ðw0 ¼ 0:3Þ 1.082 1.021 1.009

ðw0 ¼ 0:6Þ 1.300 1.082 1.037

ðw0 ¼ 0:9Þ 1.602 1.178 1.082

a=b ¼ 2 ðw0 ¼ 0:3Þ 1.204 1.054 1.024

ðw0 ¼ 0:6Þ 1.680 1.204 1.095

ðw0 ¼ 0:9Þ 2.265 1.421 1.204

(b) Stacking sequence:[0
/90
/0
/90
]

a=b ¼ 1 ðw0 ¼ 0:3Þ 1.097 1.025 1.011

ðw0 ¼ 0:6Þ 1.351 1.097 1.044

ðw0 ¼ 0:9Þ 1.695 1.209 1.097
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Figs. 2(a)–(d) present the frequency sensitivity to dispersion with only one basic variable
random at a time for square symmetric cross-ply with b=h ¼ 100: The frequency variations are
most affected by change in E11 and least affected by dispersion in n12: It is also seen that sensitivity
of the plate frequency to oscillation amplitude decreases with E22; G12 and v12: It, however,
remains unchanged with variations in E11:
It can be deduced from Eq. (27) that the frequency variance will increase with increase in the

variance of the material properties. Also, the material properties with larger numerical value are
expected to have greater contribution in this change. This behavior is confirmed by Fig. 1 for
symmetric and antisymmetric lay-ups for all properties random and Fig. 2 for individual
properties random, one at a time. However, for the square plate the reduction in SD of natural
frequency with increase in oscillation amplitude for antisymmetric lay-up with all material
properties random (Fig. 1b) and for symmetric lay-up with E22; G12 and n12 individually random
(Figs. 2b–d) is contrary to expectation as the mean frequency increases for these cases. The
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w’=0.9
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/m
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n,

 ω

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.05 0.1 0.15 0.2 0.25
sd/mean, all random inputs

w’=0.3
w’=0.6
w’=0.9

linear

sd
/m

ea
n,

 ω

Fig. 1. Influence of SD of all basic random inputs changing simultaneously on coefficient of variation of frequency of

different cross-ply with b=h ¼ 100: Key: (a) [0
/90
/90
/0
] laminate with a=b ¼ 1; (b) [0
/90
/0
/90
] laminate with
a=b ¼ 1:
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possible reason can be that the dispersion in stiffness diminishes for these cases with increase in
the oscillation amplitude. This behavior is particular to square plate only and is not exhibited in
aspect ratios 2, 3 and 4 as seen in Figs. 3–5.
Frequency sensitivity to dispersion in all the basic random inputs changing simultaneously for

symmetric cross-ply with aspect ratio a=b ¼ 1; 2, 3 and 4 are presented in Figs. 3(a)–(d). The effect
on the scattering of frequency decreases with increase in the aspect ratio from 1 to 2 and increases
slightly from 2 to 3 and from 3 to 4.
For aspect ratio other than 1, as expected, the natural frequency dispersion increases with

increase in the oscillation amplitude.
Figs. 4(a)–(c) show frequency sensitivity to dispersion in all the basic random inputs changing

simultaneously for symmetric cross-ply with different amplitude and plate thickness ratios
(b=hÞ ¼ 100; 50 and 33.33. The effect on frequency scatter shows a decrement with increase in
thickness. This is as expected as the mean frequency also decreases for these cases. This effect is
less pronounced for thicker plates. As expected, the natural frequency dispersion increases with
increase in the oscillation amplitude. For the linear case, frequency is independent of variations in
both thickness ratios and oscillation amplitudes. The effects on frequency scatter for both square
antisymmetric and rectangular symmetric laminate due to thickness ratio has the same nature as
that of the symmetric cross-ply.
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Influence of amplitude w0 ¼ wmax=b on frequency coefficient of variation with SD/mean for all
material properties changing simultaneously for symmetric cross-ply with b=h ¼ 100 and b=a ¼ 2
is shown in Fig. 5. It is found that the increase in frequency scatter with increase in oscillation
amplitude is slightly non-linear for the range considered for the study. It shows a rise with
variation in material properties.

4. Conclusion

An approach has been presented to obtain the second order statistics of frequency response of
laminated composite plates with random material properties for non-linear strain–displacement
relations. The following conclusions have been drawn from the results for the graphite-epoxy
laminated plate having all edges simply supported.

1. The influence of SD of frequency shows different sensitivity to different material properties.
The sensitivity also changes with laminate construction, thickness ratios and the amplitude of
oscillations.
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A.K. Onkar, D. Yadav / Journal of Sound and Vibration 272 (2004) 627–641638



ARTICLE IN PRESS

w’=0.3
w’=0.6
w’=0.9

w’=0.3
w’=0.6
w’=0.9

(a) (b)

(c)

w’=0.3
w’=0.6
w’=0.9

   
 s

d/
m

ea
n,

 ω

   
   

sd
/m

ea
n,

 ω

   
   

   
sd

/m
ea

n,
 ω

sd/mean, all random inputssd/mean, all random inputs

sd/mean, all random inputs

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.05 0.1 0.15 0.2 0.25

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.05 0.1 0.15 0.2 0.25

Fig. 4. Influence of SD of all basic random inputs changing simultaneously on coefficient of variation of frequency of

[0
/90
/90
/0
] laminate having different thickness ratio with a=b ¼ 2: (a) b=h ¼ 100; (b) b=h ¼ 50 and (c) b=h ¼ 33:33:

sd/mean of all random inputs , 5%

10%

15%

20%

   
 s

d/
m

ea
n,

 ω

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1
W’

Fig. 5. Influence of amplitude on coefficient of variation of frequency of [0
/90
/90
/0
] laminate, a=b ¼ 2; for all
material properties changing simultaneously.

A.K. Onkar, D. Yadav / Journal of Sound and Vibration 272 (2004) 627–641 639



2. The dispersions in the response frequency show linear variation with SD of the material
properties in the range studied.

3. Slightly non-linear variation in frequency has been seen with variation in the oscillation
amplitude.

4. Antisymmetric cross-ply laminate exhibit higher sensitivity than symmetric lay-up. Increase in
thickness ratio and oscillation amplitude of the plate results in increase in frequency scatter
with all material properties changing simultaneously for rectangular plates. Linear analysis
predicts no dependence of frequency on plate thickness ratio and oscillation amplitude.

5. The square plate shows a higher sensitivity compared to a rectangular plate. Variation of E11
has dominant effect on the scattering of frequency as compared to E22; G12 and n12:

Appendix A

The coefficients T1;T2y;T10 as functions of plate stiffness coefficients, dimensions of the plane
and mode shape are

T1 ¼ ðmp=aÞ2A11 þ ðnp=bÞ2A66;

T2 ¼ ðmp=aÞðnp=bÞðA12 þ A66Þ;

T3 ¼ �ðmp=aÞ3B11;

T4 ¼ ð�4
9

mnp2ÞSmn½ðmp=aÞ3A11 þ ðmp=aÞðnp=bÞ2ðA12 � A66Þ	;

T5 ¼ ðmp=aÞ2A66 þ ðnp=bÞ2A22;

T6 ¼ �ðnp=bÞ3B22;

T7 ¼ ð�4
9

mnp2ÞSmn½ðnp=bÞ3A22 þ ðnp=bÞðmp=aÞ2ðA12 � A66Þ	;

T8 ¼ ðmp=aÞ4D11 þ 2ðmp=aÞ2ðnp=bÞ2ðD12 þ 2D66Þ þ ðnp=bÞ4 þ D22;

T9 ¼ ð4
3

mnp2ÞSmn½ðmp=aÞ4B11 þ ðnp=bÞ4B22;

T10 ¼ð 9
32
Þ½ðmp=aÞ4A11 þ ðnp=bÞ4A22	

þ ð 1
16
Þðmp=aÞ2ðnp=bÞ2ðA12 þ 2A66Þ;

where Smn ¼ ð1� ð�1ÞmÞð1� ð�1ÞnÞ:
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